CRITICAL REVIEWS ON STABILITY AND PHOTOSENSITIZER POTENTIAL OF METAL HEXACYANOFERRATE (II) COMPLEXES: A POSSIBLE PREBIOTIC MINERAL

Brij B. Tewari^{1*}, Clint O. Thornton¹, Naeem Hamid¹, Ashish K. Tiwari^{2,3}, Marc V. Boodhoo⁴

¹Department of Chemistry, University of Guyana, PO Box: 101110, Georgetown, Guyana, brijtew@yahoo.com

²Indian Institute of Technology IIT – Kanpur, Kalyanpur, Kanpur, Uttar Pradesh 208016, Tel: +91 512 259 0151, Kanpur, India

³Indian Institute of Technology IIT – Jodhpur, Old Residency Road, Ratanada, Jodhpur, Rajasthan 342011, Tel: +91 291 244 9013, Jodhpur, India

⁴Department of Agriculture Food and Nutritional Sciences, University of Alberta, 410 Agriculture (Forestry Center), Edmonton, AB, T6G 2P5, Canada

Keywords: *Metal hexacyanoferrate (II) complexes, Synthesis, Stability, Oxidizer, photosensitizer*

ABSTRACT

Bismuth, cadmium, cobalt, manganese, nickel, lead, antimony and zirconium hexacyanoferrate (II) complexes or metal ferrocyanides were synthesized and characterized by elemental and spectral studies. Stability of metal hexacyanoferrate (II) complexes were recorded in heat, light (UV, VIS), different concentrations of various acids (HCl, H_2SO_4 , HNO₃), different concentration of various bases (NaOH, KOH, NH₄OH), sea and tap water.The photosensitizing activity of metal hexacyanoferrate (II) complexes were found to be possible photosensitizer during the course of chemical evolution on primitive Earth.

*Corresponding author: brijtewari2011@yahoo.com

RESUMEN

Spanish title; Revisiones críticas sobre la estabilidad y el potencial fotosensibilizante de complejos metálicos de hexacianoferrato (II): un posible mineral prebiótico. Los complejos de hexacianoferrato (II) o ferrocianuros metálicos de bismuto, cadmio, cobalto, manganeso, níquel, plomo, antimonio y zirconio fueron sintetizados y caracterizados por estudios espectrales elementales. La estabilidad de los complejos metálicos de hexacianoferrato (II) fue registrada bajo condiciones de calor, luz (UV, VIS), diferentes concentraciones de varios ácidos (HCl, H₂SO₄, HNO₃), diferentes concentraciones de varias bases (NaOH, KOH, NH₄OH), y agua de mar y agua potable. La actividad fotosensibilizadora de los complejos metálicos fue probada mediante el uso de yoduro de potasio y solución de almidón. Los ferrocianuros de niquel, antimonio y zirconio fueron determinados como posibles fotosensibilizadores durante el curso de la evolución química en la era terrestre primitiva.

INTRODUCTION

Due to the ease of formation of cyanide ions under prebiotic conditions, it is thought that cyanide may have formed stable complexes with abundant transition metal ions present in the primeval seas. The primitive Earth was anoxygenic and its reducing potential was not high enough hence most metals were present in their lower oxidation states. It is further assumed that during the course of chemical evolution, cyanide may also have formed some insoluble double metal ferrocyanides of general formula M_2 [Fe (CN)₆] x H₂O, where M can be Cd, Sb, Zn, Bi, Cu, Mo etc. The double metal ferrocyanides are insoluble in water and are considered to have settled to the bottom of the

primeval sea and acted as active surfaces for the condensation of amino acids nucleic acids, sugars etc. [1]. It is assumed that chemical evolution took place in the primeval sea and their presence was probable. The occurrence of ferri-ferrocyanide in the anoxic Archaean hydrosphere lends support to this hypothesis [2]. It is believed that photocatalytic activity by inorganic minerals could have been very pronounced on the primitive Earth. The oxides of titanium, zinc and tungsten possess high photosensitizing activity comparable with the activity of porphyrins and chlorophylls. These compounds are able to sensitize reactions accompanied by light energy storage in terminal stable products [3, 4]. It is well established that metal ferrocyanides act as adsorbents [5-7] ion exchangers [8-11] and photosensitizers [12, 13]. Stability of double metal ferrocyanides in the primeval seas may possibly have played a significant role in the protection and condensation of bioorganic molecules during course of chemical evolution on primitive Earth.

Accepted 04 06 2016

Tewari et Al.

A search in the literature indicated some reports available on synthesis of metal ferrocyanides and very few information available on stability and photosensitizing activity of metal ferrocyanides. In view of this, the attempt was made to study stability and photosensitizing activity of bismuth, cadmium, cobalt, manganese, nickel, lead, antimony and zirconium ferrocyanides.In addition, the present work describes a review on stability and photosensitizing activity of metal ferrocyanides.

RESULTS AND DISCUSSION

Elemental analysis and spectral studies of metal ferrocyanides

The percentage composition of metals in metal ferrocyanides are given in Table 1. The percentage of metals (bismuth, cadmium, cobalt, manganese, nickel, lead, antimony, zirconium) are found higher in comparison to iron. Infrared spectral data of metal ferrocyanides are given in Table 2. Absorption frequencies of water molecule and OH groups are found to be higher than HOH bending and $C \equiv N$ stretching frequencies.

Effects of heat on the stability of metal ferrocyanides

It is clear from Table 3 that bismuth, manganese, cobalt and cadmium ferrocyanides are found to be stable at 100° C. Antimony and zirconium ferrocyanides are stable to heat at 150° C.

Stability of metal ferrocyanides in various concentrations of acids at room temperature and at boiling temperature

It is observed from Table 4 that ferrocyanides of bismuth, nickel and cadmium are insoluble in various concentrations of hydrochloric acid at room temperature with no change in colour. Ferrocyanides of lead, manganese, cobalt, antimony and zirconium are found to be slightly soluble and unstable in various concentration of HCl at room temperature. Table 5 showed that ferrocyanides of nickel, cadmium and lead are insoluble in various concentrations of boiled hydrochloric acid, and they were found to be stable too. Ferrocyanides of cobalt, antimony, zirconium, bismuth and ferrocyanide of manganese are found to be slightly soluble and unstable in various concentrations of boiled hydrochloric acid.

It is clear from Tables 6 and 7 that ferrocyanides of nickel, cobalt, zirconium, cadmium, lead and bismuth are insoluble and stable while ferrocyanides of manganese and antimony are slightly soluble and unstable in various concentrations of sulphuric acid at room temperature and at boiling temperature.

It is observed from Table 8 that ferrocyanides of bismuth, cadmium, cobalt, nickel, lead and zirconium are found to be insoluble and stable while ferrocyanides of antimony and manganese are found to be slightly soluble and unstable in various concentrations of nitric acid at room temperature.

Table 9 showed that cadmium ferrocyanides is found to be stable and insoluble in comparison to ferrocyanides of bismuth, cobalt, manganese, nickel, lead, antimony and zirconium in various concentrations of nitric acid at boiling temperature. The colour changes of metal ferrocyanides may be due to electronic transition in the molecules of the solid metal ferrocyanides.

Stability of metal ferrocyanides in various concentration of bases at room and boil temperature

It is clear from Table 10 that ferrocyanides of bismuth, cadmium, cobalt, manganese, nickel, and zirconium are insoluble and stable while ferrocyanides of antimony and lead are slightly soluble and unstable in various concentrations of sodium hydroxide at room temperature. Table 11 indicated that ferrocyanides of bismuth,

cadmium, cobalt, nickel, manganese and zirconium are found to be insoluble and stable while ferrocyanides of antimony and lead are soluble and unstable in various concentration of sodium hydroxide at boiling temperature. It is observed from Tables 12 and 13 that ferrocyanides of bismuth, cadmium, cobalt, manganese, nickel and zirconium are insoluble and stable while lead ferrocyanides is soluble and unstable in various concentrations of potassium hydroxide at room temperature and at boiling temperatures. Antimony ferrocyanide is insoluble and stable at room temperature while it's partly soluble and unstable at boil temperature of KOH. It is clear from Tables 14 and 15 that ferrocyanides of bismuth, cadmium, cobalt, manganese, nickel, antimony and zirconium ferrocyanide, are insoluble and stable while lead ferrocyanides is soluble and unstable in various concentrations of ammonium hydroxide at room temperature and at boil temperature. The colour change of metal ferrocyanide is mainly due to electronic transition within metal ferrocyanide molecules.

Accepted 04 06 2016

Tewari et Al.

Stability of metal ferrocyanides in tap water and sea water at room and boiling temperature

Table 16 showed that all metal ferrocyanides are found to be insoluble and stable in the tap water and sea (Atlantic Ocean) water at room and boil temperature. This study supports the hypothesis that metal ferrocyanides are possible insoluble and stable during the course of chemical evolution on primitive Earth. They also play important roles in protection and condensation of bioorganic molecules during the course of chemical evolution in primeval seas.

Effect of light (UV/VIS) on the stability of metal ferrocyanides

It is clear from Tables 17 and 18 that ferrocyanides of antimony, cadmium and zirconium are stable in visible and ultraviolet light until 48 hrs of radiation. Ferrocyanides of bismuth and manganese are found to be stable until 12 hrs in vis and uv light. Ferrocyanides of nickel, cobalt and lead are unstable in visible light at 12, 24, 36 and 48 hrs in visible and ultra violet light.

Test on oxidizing and photosensitizing activity of metal hexacyanoferrate (II) complexes.

Test on oxidizing and photosensitizing activity of metal ferrocyanide in potassium iodide and starch solution indicated ferrocyanides of nickel, antimony and zirconium as possible photosensitizers; ferrocyanides of lead, manganese, cobalt and cadmium as possible oxidizer and bismuth ferrocyanide as both oxidizer and photosensitizer during the course of chemical evolution on primitive Earth.

CONCLUSION

The following conclusions can be drawn from the present study:

- 1. The stability of ferrocyanides of bismuth, cadmium, cobalt, manganese, nickel, lead, antimony and zirconium was found to be affected by the presence of heat and light and not affected by the presence of sea and tap water at room temperature and at boiling temperature.
- 2. Stability of ferrocyanides of bismuth, cadmium, cobalt, manganese, nickel, lead, antimony and zirconium is affected by acids and bases at room temperature and at boiling temperature.
- 3. It was found that ferrocyanides of nickel, antimony and zirconium are possible photosensitizers and that ferrocyanides of lead, manganese, cobalt and cadmium are possible oxidizers during the course of chemical evolution and the origins of life on the primitive Earth.
- 4. It is also concluded from present study that double metal ferrocyanides are insoluble and stable during the course of chemical evolution on primitive Earth and play significant role in condensation of precursors of early life in primeval seas.

EXPERIMENTAL

Materials

All chemicals used were of AnalaR grade. Potassium ferrocyanide, antimony(II) chloride, cadmium (II) chloride, zirconyl chloride, bismuth (II) chloride, lead(II) chloride, manganese(II) chloride, cobalt(II) chloride, nickel(II) chloride were obtained from BDH Poole, England. All chemicals used without further purification. Solutions were prepared in doubly distilled water.

Synthesis of metal hexacyanoferrate (II) complexes

Metal (bismuth, cadmium, manganese, nickel, lead, antimony and zirconium) hexacyanoferrate (II) complexes were prepared according to method reported by Kourim [14]. Metal hexacyanoferrate (II) complexes were prepared by adding metal chloride (500 ml, 0.1 M) and potassium ferrocyanide (167 ml, 0.1 M) solutions with constant stirring. The reaction mixture was heated on a water bath for 3h and kept as such at room temperature. The precipitate was filtered under vacuum, washed several times with distilled water and dried in an air oven at 60C. The dried product was grounded and sieved to 125 μ m particle size.

Accepted 04 06 2016

Tewari et Al

Cobalt ferrocyanide was synthesized by adding (1 volume, 0.5 M) potassium ferrocyanide and (2.4 volume, 0.3 M) cobalt chloride and kept as such after gently stirring over a period of 30 min at room temperature [15]. The slurry of cobalt ferrocyanide was filtered under vacuum, washed several times with distilled water and dried. The resulting granules were dried and powdered to $125 \,\mu$ m particle size.

Characteristics of metal ferrocyanides

Bismuth, cadmium, cobalt, manganese, nickel, lead, antimony and zirconium ferrocyanides are light blue, white, brown, grey, light green, pale green, blue, and deep blue colours, respectively. These metal ferrocyanides are amorphous insoluble solid and showed no x-ray pattern.

The metal ferrocyanides were characterized on the basis of elemental and spectral studies. The percentage composition of metals was determined by IL - 751 atomic adsorption spectrophotometer [16]. Carbon, hydrogen and nitrogen analysis were carried out by CEST – 118, CHN analyzer. Percentage composition of elements in metal ferrocyanides are given in Table 1.

Infrared spectra of the metal ferrocyanides were recorded in KBr disc on Beckman IR-20 spectrophotometer. All eight metal ferrocyanides show at broad peak at $3450 - 3700 \text{ cm}^{-1}$ is characteristics of water molecule and OH group. Also a peak at around $1580 - 1635 \text{ cm}^{-1}$ is due to HOH bending. Two sharp peaks, one at $1990 - 2070 \text{ cm}^{-1}$ and the other at $580 - 610 \text{ cm}^{-1}$ in all metal ferrocyanides are characteristics of cyanide stretching and Fe-C stretching frequencies, respectively [17]. Another sharp band at 440-500 cm⁻¹ in all metal ferrocyanides probably shows the presence of metal – nitrogen bond thus indicating a certain degree of polymerization in the products [18, 19] (Table 2).

Stability study on metal hexacyanoferrate (II) complexes

Effect of heat on the stability of metal ferrocyanide

A 20 mg of each metal ferrocyanides were placed in a petri dish. The Petri dishes were then placed in the air oven for 6 hrs at 100° C. This process was repeated at 150° C, 200° C and 250° C to demonstrate the effect of heat on the various metal ferrocyanides. The colour of metal ferrocyanides at various temperatures was observed (Table 3)

Stability of metal ferrocyanides in various concentrations of acids at room and at boiling temperature

The metal ferrocyanides (20 mg) were placed in the test tubes containing 10 ml of each 2.0 M, 1.0 M, 0.5 M and 0.1 M acids (HCl, H_2SO_4 , HNO_3). The mixture was agitated for 20 mins at room temperature and observation for any change in colour of metal ferrocyanides was recorded (Tables 4, 6, 8). The same reaction mixture boiled on Bunsen flame for 20 mins and any change in colour of metal ferrocyanides was recorded (Tables 5, 7, 9). This process was repeated for each metal ferrocyanides. The colour change of metal ferrocyanides was recorded.

Stability of metal ferrocyanides in various concentrations of bases at room temperature and at boiling temperature

The metal ferrocyanides (20 mg) were placed in the test tubes containing 10 ml of each 2.0 M, 1.0 M, 0.5 M, 0.1 M bases (NaOH, KOH, NH₄OH). The mixture was agitated for 20 minutes at room temperature and observation for any change in colour of metal ferrocyanides was recorded (Tables 10, 12, 14). The same reaction mixture boiled on Bunsen flame for 20 minutes and any change in colour of metal ferrocyanides was recorded (Tables 11, 12, 14). The same reaction mixture boiled on Bunsen flame for 20 minutes and any change in colour of metal ferrocyanides was recorded (Tables 11, 13, 15). The process is repeated for each metal ferrocyanides. The colour change of metal ferrocyanides was recorded.

Stability of metal ferrocyanides in tap water and sea water at room temperature and at boiling temperature

The metal ferrocyanides (20 mg) were placed in each test tube containing tap water and sea water. The mixture was then agitated for 1h and observation for a change in colour of metal ferrocyanides was recorded (Table 16). The same reaction mixture boiled on Bunsen Flame for 20 mins and change in colour of metal ferrocyanides was recorded (Table 16)

Accepted 04 06 2016

Tewari et Al.

Effect of light (UV/VIS) on the stability of metal ferrocyanides

A 20 mg of each metal ferrocyanide was placed in a dry Petri dish and the original colour was recorded. A 250 W visible lamp was kept vertically above the sample at a distance of 22 cm. The observations for any change in colour of metal ferrocyanides were recorded at 12, 24, 36 and 48 hrs (Table 17). The same experiment was repeated using a long wave (300-380 nm) ultra violet lamp. The observation of any change in colour of metal ferrocyanides was recorded. (Table 18).

Test on oxidizing and photosensitizing activity of metal hexacyanoferrate (II) complexes.

The oxidizing and photosensitizing capacity of metal hexacyanoferrate (II) complexes were compared by potassium iodide and starch solution. Oxidation of iodide to iodine in presence of starch gives blue colour. One drop of freshly prepared 2.0 % starch solution was added into test tubes (length = 10 cm; internal diameter = 1.30 cm) containing 10 ml of 0.1 M potassium iodide solution. A 25 mg of the metal ferrocyanides were added into each test tube and agitated, observation for any decolourization of blue colour and potassium iodide and starch solution was recorded. The same experiment was repeated using a 250 W, visible lamp, and a long wave UV lamp, which were kept vertically above the test tubes at a distance of 15 cm. Photosensitizers will decolourize the blue colour of potassium iodide and starch solution in the presence of light (-VIS/UV). The oxidizers will decolourize the blue colour of potassium iodide and starch solution in absence of light.

Metal	Percentage (%) found					
Ferrocyanides*	Metal	Iron	Carbon	Hydrogen	Nitrogen	
BiFc	60.61	8.50	10.80	0.90	12.75	
CdFc	41.59	11.50	15.13	1.69	17.37	
CoFc	26.60	13.10	15.50	2.71	18.10	
MnFc	26.90	13.12	16.30	2.80	18.60	
NiFc	31.30	14.80	20.30	1.50	21.40	
PbFc	58.02	7.80	9.80	1.27	12.32	
SbFc	47.50	12.50	15.25	0.89	17.79	
ZrFc	34.66	10.30	12.97	2.90	15.41	

Table 1: Elemental	analysis of n	netal hexacyano	oferrate (II)	complexes

* BiFc = Bismuth ferrocyanide; CdFc = Cadmium ferrocyanide; CoFc = Cobalt ferrocyanide MnFc = Manganese ferrocyanide; NiFc = Nickel ferrocyanide; PbFc = Lead ferrocyanide;

SbFc = Antimony ferrocyanide; ZrFc = Zirconium ferrocyanide

Metal	Absorption frequency (cm^{-1})						
Ferrocyanides*	H ₂ O molecule	HOH	$C \equiv N$ stretching	Fe-C	$Metal - N^*$		
Terrocyaniaes.	OH Group	bending	-				
BiFc	3650	1625	2000	580	500		
CdFc	3600	1620	2000	600	490		
CoFc	3510	1635	2070	595	460		
MnFc	3800	1600	2000	610	500		
NiFc	3450	1600	2090	590	440		
PbFc	3700	1580	1990	600	490		
SbFc	3600	1600	2000	580	490		
ZrFc	3600	1600	2000	580	500		

Table 2: Infrared spectra data of metal ferrocyanides

* Metal - N band shows degree of Polymerization

Accepted 04 06 2016 Tewari et Al.

Table 3:	Effect of	heat on	metal f	ferrocyanides
----------	-----------	---------	---------	---------------

Metal	Original colour	100° C	150° C	200° C	250° C
ferrocyanides					
BiFc	Light blue	No change	Dark blue	Dark brown	Darker brown
CdFc	White	No change	Light brown	Light brown	Brown
CoFc	Brown	No change	Black	Black	Black
MnFc	Grey	No change	Dark grey	Darker grey	Black
NiFc	Light green	Green	Green	Greenish brown	Black
PbFc	Pale green	Dark surface layer	Dark grey	Darker grey	Brownish grey
SbFc	Blue	No change	No change	Brown	Dark brown
ZrFc	Deep blue	No change	No change	Brown	Dark brown

Amount of metal ferrocyanides used = 20 mg; Time = 6hrs

Table 4: Stability of metal ferrocyanides in hydrochloric acid at room temperature

Metal	Original colour	100° C	150° C	200° C	250° C
ferrocyanides					
BiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue				
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles				
	remained same				
CoFc	Slightly soluble				
	Brown particles				
	turned dark blue	turned dark blue	turned black	turned dark blue	turned dark blue
MnFc	Slightly soluble				
	Grey particles				
	turned white				
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green particles				
	turned to dirty green				
PbFc	Slightly soluble				
	Pale green particles	Palegreen particles	Palegreen particles	Palegreen particles	Palegreen particles
	turned light blue				
SbFc	Slightly soluble				
	Blue particles				
	turned deep blue				
ZrFc	Slightly soluble				
	Deep blue particles				
	turned light blue				

Amount of metal ferrocyanides used = 20 mg; Volume of hydrochloric acid = 10 ml; Time = 6hrs; Room temperature = 31°C

Table 5: Stability of met	ıl ferrocyanides	in hydrochloric acid a	<i>it boiling temperature</i>
---------------------------	------------------	------------------------	-------------------------------

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Slightly soluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue particles did	Light blue particles did	Light blue particles	Light blue particles	Light blue particles
	not change	not change	did not change	did not change	did not change
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	turned pale green	turned pale green	turned pale green	turned pale green	turned pale green
CoFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	turned green	turned green	turned green	turned green	turned green
MnFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	turned white	turned white	turned white	turned white	turned white
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green particles	Light green particles	Light green particles	Light green particles	Light green particles
	did not change	did not change	did not change	did not change	did not change
PbFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Pale green particles	Pale green particles	Pale green particles	Pale green particles	Pale green particles
	did not change	did not change	did not change	did not change	did not change
SbFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Blue particles	Blue particles	Blue particles	Blue particles	Blue particles
	turned deep blue	turned deep blue	turned deep blue	turned deep blue	turned deep blue
ZrFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles
	did not change	did not change	did not change	did not change	did not change

Amount of metal ferrocyanides used = 20 mg; Volume of hydrochloric acid = 10 ml; Time = 20 mins; Room temperature = 31°C

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue particles,	Light blue particles	Light blue particles	Light blue particles	Light blue particles
	did not change	did not change	did not change	did not change	did not change
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	did not change	did not change	did not change	did not change	did not change
CoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	did not change	did not change	did not change	did not change	did not change
MnFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	turned white	turned white	turned white	turned white	turned white
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green particles	Light green particles	Light green particles	Light green	Light green
	did not change	did not change	did not change	particles	particles
				did not change	did not change
PbFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Pale green particles	Pale green particles	Pale green particles	Pale green particles	Pale green particles
	change to light	change to light green	change to light green	change to light	change to light
	green			green	green
SbFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Blue particles	Blue particles	Blue particles	Blue particles	Blue particles
	did not change	did not change	did not change	did not change	did not change
ZrFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles
	turned light green	turned light green	turned light green	turned light green	turned light green

Table 6: Stability of metal ferrocyanides in sulphuric acid at room temperature

Tewari et Al.

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue	Light blue	Light blue	Light blue	Light blue
	particles did not	particles did not	particles did not	particles did	particles did not
	change	change	change	not change	change
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	turned pale green	turned pale	turned pale green	turned pale	turned pale green
		green		green	
CoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	did not change	did not change	did not change	did not change	did not change
MnFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	turned white	turned white	turned white	turned white	turned white
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green	Light green	Light green	Light green	Light green
	particles	particles	particles	particles	particles
	did not change	did not change	did not change	did not change	did not change
PbFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Pale green	Pale green	Pale green	Pale green	Pale green
	particles	particles	particles	particles	particles
	changed to light	changed to light	changed to light	changed to	changed to light
	blue	blue	blue	light blue	blue
SbFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Blue particles	Blue particles	Blue particles	Blue particles	Blue particles
	turned deep blue	turned deep blue	turned deep blue	turned deep	turned deep blue
				blue	
ZrFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Deep blue	Deep blue	Deep blue	Deep blue	Deep blue
	particles	particles	particles	particles	particles
	turned light green	turned light	turned light green	turned light	turned light
		green		green	green

Table 7: Stability of metal ferrocyanides in boiling sulphuric acid

Amount of metal ferrocyanides used = 20 mg; Volume of sulphuric acid = 10 ml; Time = 20 mins; Room temperature = 31°C

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue particles	Light blue	Light blue particles	Light blue particles	Light blue
	did not change	particles did not	did not change	did not change	particles did not
	-	change	-	-	change
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	turned light green	turned light green	turned light green	turned light green	turned light greer
CoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	did not change	did not change	did not change	did not change	did not change
MnFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	turned white	turned white	turned white	turned white	turned white
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green particles	Light green	Light green particles	Light green particles	Light green
	did not change	particles	did not change	did not change	particles
	-	did not change	-	-	did not change
PbFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Pale green particles	Pale green	Pale green particles	Pale green particles	Pale green
	change to light blue	particles	change to light blue	change to light blue	particles
	0 0	change to light	0 0	0 0	change to light
		blue			blue
SbFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Blue particles	Blue particles	Blue particles	Blue particles	Blue particles
	did not change	did not change	did not change	did not change	did not change
ZrFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Deep blue particles	Deep blue	Deep blue particles	Deep blue particles	Deep blue
	did not change	particles	did not change	did not change	particles
	5	did not change	č	÷	did not change

Table 8. Stability of metal ferrocyanides in nitric acid at room temperature

Accepted 04 06 2016 Tewari et Al.

Amount of metal ferrocyanides used = 20 mg; Volume of nitric acid = 10 ml; Time = 20 mins; Room temperature = 31°C

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Light blue change to	Light blue change to	Blue Green change	Light blue change	Light blue change to
	green	green	to green	to green	green
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	turned rust brown	turned rust brown	turned rust brown	turned rust brown	turned rust brown
CoFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	did not change	did not change	did not change	did not change	did not change
MnFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	turned rust brown	turned rust brown	turned rust brown	turned rust brown	turned rust brown
NiFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Light green particles,	Light green particles,	Light green	Light green	Light green
	turned dirty green	turned dirty green	particles,	particles,	particles,
			turned dirty green	turned dirty green	turned dirty green
PbFc	Soluble	Soluble	Soluble	Soluble	Soluble
	Pale green particles	Pale green particles	Pale green particles	Pale green particles	Pale green particles
	dissolved to give a	dissolved to give a	dissolved to give a	dissolved to give a	dissolved to give a
	dark yellow solution	dark yellow solution	dark yellow	dark yellow	dark yellow solution
			solution	solution	
SbFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Blue particles	Blue particles	Blue particles	Blue particles	Blue particles
	turned deep blue	turned deep blue	turned deep blue	turned deep blue	turned deep blue
ZrFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles
	change to dark green	change to dark green	change to dark	change to dark	change to dark
			green	green	green

Amount of metal ferrocyanides used = 20 mg; Volume of nitric acid = 10 ml; Time = 20 mins; Room temperature = 31°C

Table 10: Stability of metal ferrocyanides in sodium hydroxide solution at room temperature

Accepted 04 06 2016 Tewari et Al.

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blueparticles	Light blue particles	Light blue particles	Light blue particles	Light blue particles
	change to yellow	change to yellow	change to yellow	change to yellow	change to yellow
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	did not change	did not change	did not change	did not change	did not change
CoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	changed to rust brown	changed to rust brown	changed to rust	changed to rust	changed to rust
			brown	brown	brown
MnFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	changed to light brown	changed to light	changed to light	changed to light	changed to light
		brown	brown	brown	brown
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green particles	Light green particles	Light green particles	Light green particles	Light green particles
	change to dirty green	change to green	change to green	change to green	change to green
PbFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Pale green particles	Pale green particles	Pale green particles	Pale green particles	Pale green particles
	changed to white	changed to white	changed to white	changed to white	changed to white
SbFc	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble	Slightly soluble
	Blue particles	Blue particles	Blue particles	Blue particles	Blue particles
	changed to brown	changed to brown	changed to brown	changed to brown	changed to brown
ZrFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles
	changed to light brown	changed to light	changed to light	changed to light	changed to light
	- 0	brown	brown	brown	brown

Amount of metal ferrocyanides used = 20 mg; Volume of sodium hydroxide = 10 ml; Time = 20 mins; Room temperature = 31°C

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue particles	Light blue particles	Light blue particles	Light blue particles	Light blue
	change to yellow	change to yellow	change to yellow	change to yellow	particles change to yellow
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	did not change	did not change	did not change	did not change	did not change
CoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	changed to rust brown	changed to rust brown	changed to rust brown	changed to rust brown	changed to rust brown
MnFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	changed to rust	changed to rust	changed to rust	changed to rust brown	changed to rust
	brown	brown	brown	0	brown
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green particles	Light green particles	Light green particles	Light green particles	Light green
	change to dark green	change to dark green	change to dark green	change to dark green	particles
					change to dark green
PbFc	Soluble	Soluble	Soluble	Soluble	Soluble
	Pale green particles	Pale green particles	Pale green particles	Pale green particles	Pale green
	dissolved	dissolved	dissolved	dissolved	particles dissolved
SbFc	Partly soluble	Partly soluble	Partly soluble	Partly soluble	Partly soluble
	Blue particles	Blue particles	Blue particles	Blue particles	Blue particles
	turned yellow	turned yellow	turned yellow	turned yellow	turned yellow
ZrFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue
	changed to light	changed to light	changed to light	changed to light	particles
	brown	brown	brown	brown	changed to light
					brown

Table 11: Stability of metal ferrocyanides in boiling sodium hydroxide

Amount of metal ferrocyanides used = 20 mg; Volume of sodium hydroxide used= 10 ml; Time = 20 mins; Room temperature = 31°C

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue particles	Light blue particles	Light blue particles	Light blue particles	Light blue particles
	turned yellow	turned yellow	turned yellow	turned yellow	turned yellow
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	did not change	did not change	did not change	did not change	did not change
CoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	did not change	did not change	did not change	did not change	did not change
MnFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	turned rust brown	turned rust brown	turned rust brown	turned rust brown	turned rust brown
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green particles	Light green particles	Light green	Light green	Light green particle
	change dark green	change dark green	particles	particles	change dark green
			change dark green	change dark green	
PbFc	Soluble	Soluble	Soluble	Soluble	Soluble
	Pale green particles	Pale green particles	Pale green particles	Pale green particles	Pale green particles
	dissolved	dissolved	dissolved	dissolved	dissolved
SbFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Blue particles	Blue particles	Blue particles	Blue particles	Blue particles
	did not change	did not change	did not change	did not change	did not change
ZrFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles
	changed to light brown	changed to light	changed to light	changed to light	changed to light
	5 5	brown	brown	brown	brown

Table 12: Stability of metal ferrocyanides in potassium hydroxide at room temperature

Amount of metal ferrocyanides used = 20 mg; Volume of sodium hydroxide used= 10 ml; Time = 20 mins; Room temperature = 31°C

Table 13: Stability of metal ferrocyanides in boiling potassium hydroxide

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue	Light blue particles	Light blue particles	Light blue particles	Light blue particles
	particles turned	turned yellow	turned yellow	turned yellow	turned yellow
	yellow				
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	did not change	did not change	did not change	did not change	did not change
CoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	turned rust brown	turned rust brown	turned rust brown	turned rust brown	turned rust brown
MnFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	turned rust brown	turned rust brown	turned rust brown	turned rust brown	turned rust brown
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green	Light green particles	Light green	Light green particles	Light green particles
	particles	turned dark green	particles	turned dark green	turned dark green
	turned dark green		turned dark green		
PbFc	Soluble	Soluble	Soluble	Soluble	Soluble
	Pale green	Pale green particles	Pale green particles	Pale green particles	Pale green particles
	particles	dissolved	dissolved	dissolved	dissolved
	dissolved				
SbFc	Partly soluble	Partly soluble	Partly soluble	Partly soluble	Partly soluble
	Some blue	Some blue particles	Some blue particles	Some blue particles	Some blue particles
	particles	dissolved	dissolved	dissolved	dissolved
	dissolved				
ZrFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Deep blue	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles
	particles	changed to light brown	changed to light	changed to light	changed to light
	changed to light	5 5	brown	brown	brown
	brown				

Amount of metal ferrocyanides used = 20 mg; Volume of potassium hydroxide= 10 ml; Time = 20 mins; Room temperature = 31°C

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue particles	Light blue particles	Light blue	Light blue particles	Light blue particles
	turned yellow	turned yellow	particles turned yellow	turned yellow	turned yellow
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	did not change	did not change	did not change	did not change	did not change
CoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	did not change	did not change	did not change	did not change	did not change
MnFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	turned rust brown	turned rust brown	turned rust brown	turned rust brown	turned rust brown
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green particles	Light green	Light green	Light green particles	Light green particle
	turned dark green	particles	particles	turned dark green	turned dark green
		turned dark green	turned dark green		
PbFc	Soluble	Soluble	Soluble	Soluble	Soluble
	Pale green particles	Pale green particles	Pale green	Pale green particles	Pale green particles
	dissolved	dissolved	particles	dissolved	dissolved
			dissolved		
SbFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Blue particles	Blue particles	Blue particles	Blue particles	Blue particles
	did not change	did not change	did not change	did not change	did not change
ZrFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Deep blue particles	Deep blue particles	Deep blue	Deep blue particles,	Deep blue particles
	changed to light	changed to light	particles	changed to light	changed to light
	brown	brown	changed to light brown	brown	brown

Table 14: Stability of metal ferrocyanides in ammonium hydroxide at room temperature

Tewari et Al.

Amount of metal ferrocyanides used = 20 mg; Volume of ammonium hydroxide= 10 ml; Time = 20 mins; Room temperature = 31°C

Table 15: Stability of metal ferrocyanides in boiling ammonium hydroxide

Metal	2.0M	1.0M	0.5M	0.2M	0.1M
ferrocyanides					
BiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue particles	Light blue particles	Light blue particles	Light blue	Light blue particles
	turned yellow	turned yellow	turned yellow	particles turned yellow	turned yellow
CdFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles	White particles
	did not change	did not change	did not change	did not change	did not change
CoFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Brown particles	Brown particles	Brown particles	Brown particles	Brown particles
	did not change	did not change	did not change	did not change	did not change
MnFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Grey particles	Grey particles	Grey particles	Grey particles	Grey particles
	turned rust brown	turned rust brown	turned rust brown	turned rust brown	turned rust brown
NiFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Light green particles	Light green particles	Light green	Light green	Light green particles
	turned dark green	turned dark green	particles	particles	turned dark green
			turned dark green	turned dark green	
PbFc	Soluble	Soluble	Soluble	Soluble	Soluble
	Pale green	Pale green particles	Pale green particles	Pale green	Pale green particles
	particlesdissolved	dissolved	dissolved	particles	dissolved
				dissolved	
SbFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Blue particles	Blue particles	Blue particles	Blue particles	Blue particles
	did not change	did not change	did not change	did not change	did not change
ZrFc	Insoluble	Insoluble	Insoluble	Insoluble	Insoluble
	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue	Deep blue particles
	changed to light brown	changed to light	changed to light	particles	changed to light
		brown	brown	changed to light	brown
				brown	

Amount of metal ferrocyanides used = 20 mg; Volume of ammonium hydroxide= 10 ml; Time = 20 mins; Room temperature= 31°C

Downloadable from: Revista Boliviana 17 de Química. Volumen 33 N°1. Año 2016 http://www.bolivianchemistryjournal.org, http://www.scribd.com/bolivianjournalofchemistry

Metal	Sea water	Sea Water	Tap Water	Tap Water Boiled
ferrocyanides	Room Temp	Boiled	Room Temp	-
BiFc	Insoluble	Insoluble	Insoluble	Insoluble
	Light blue particles did			
	not change	not change	not change	not change
CdFc	Insoluble	Insoluble	Insoluble	Insoluble
	White particles	White particles	White particles	White particles
	did not change	did not change	did not change	did not change
CoFc	Insoluble	Insoluble	Insoluble	Insoluble
	Brown particles	Brown particles	Brown particles	Brown particles
	did not change	did not change	did not change	did not change
MnFc	Insoluble	Insoluble	Insoluble	Insoluble
	grey particles	grey particles	grey particles	grey particles
	did not change	did not change	did not change	did not change
NiFc	Insoluble	Insoluble	Insoluble	Insoluble
	Light green particles	Light green particles	Light green particles	Light green particles
	did not change	did not change	did not change	did not change
PbFc	Insoluble	Insoluble	Insoluble	Insoluble
	Pale green particles	Pale green particles	Pale green particles	Pale green particles
	did not change	did not change	did not change	did not change
SbFc	Insoluble	Insoluble	Insoluble	Insoluble
	Blue particles	Blue particles	Blue particles	Blue particles
	did not change	did not change	did not change	did not change
ZrFc	Insoluble	Insoluble	Insoluble	Insoluble
	Deep blue particles	Deep blue particles	Deep blue particles	Deep blue particles
	did not change	did not change	did not change	did not change

Table 16: Stability of metal ferrocyanides in sea and tap water (boiled and room temperature)

Accepted 04 06 2016

Tewari et Al.

Table 17: Effect of	of light (VIS) on the stal	oility of metal	ferrocyanides
---------------------	----------------------------	-----------------	---------------

Metal	Original colour	12 hrs	24 hrs	36 hrs	48 hrs
ferrocyanides					
BiFc	Light blue	No change	Dark blue	Dark blue	Darker blue
CdFc	White	No change	No change	No change	No change
CoFc	Brown	Dark brown	Dark brown	Dark brown	Dark brown
MnFc	Grey	No change	Dark grey	Dark grey	Darker grey
NiFc	Light green	Green	Green	Green	Green
PbFc	Pale green	Dark light green	Dark light green	Dark light green	Dark light gree
SbFc	Blue	No change	No change	No change	No change
ZrFc	Deep blue	No change	No change	No change	No change

Amount of metal ferrocyanides used = 20 mg; Lamp = 250 watt, VIS; Distance of lamp from metal ferrocyanides = 22 cm

Table 18: Effect of light (UV)	on the stability of	f metal ferrocyanides

Metal	Original colour	12 hrs	24 hrs	36 hrs	48 hrs
ferrocyanides					
BiFc	Light blue	No change	Dark blue	Dark blue	Darker blue
CdFc	White	No change	No change	No change	No change
CoFc	Brown	Dark brown	Dark brown	Dark brown	Dark brown
MnFc	Grey	No change	Dark grey	Dark grey	Darker grey
NiFc	Light green	Green	Green	Green	Green
PbFc	Pale green	Dark light green	Dark light green	Dark light green	Dark light green
SbFc	Blue	No change	No change	No change	No change
ZrFc	Deep blue	No change	No change	No change	No change

Amount of metal ferrocyanides used = 20 mg; Lamp = 250 watt, UV, Long wave (300-380 nm); Distance of lamp from metal ferrocyanides = 22 cm

REFERENCES

- 1. Kamaluddin, Nath, M., Deopuzari, S. W., Sharma, A., 1990, Orig. Life Evol. Biosph., 20, 259.
- Arrhenius, G., 4th Symposium on Chemical Evolution and the Origin and Evolution of Life, NASA, Ames Research Centre, Moffet Field, 1990, California, p. 24.
- 3. Krasnovsky, A. A., Brin, G. P. 1962, DoklAn USSR, 147, 654.
- 4. Krasnovsky, A. A., Brin, G. P. 1970, Mol. Photonics, Izd. Nauka, 161.
- 5. Tewari, B. B., 2000, Rev. Anal. Chem., 19, 491.
- 6. Tewari, B. B., Boodhoo, M. V., 2005, Main Group Metal Chem., 28, 23.
- 7. Tewari, B. B., Boodhoo, M. V., 2005, J. Colloid. Interf. Sci., 289, 328.
- 8. Baetsle, L. H., Van Deyck, D., Huys, D., 1965, J. Inorg. Nucl. Chem., 27, 683.

- Tewari et Al.
- Huys, D., Baetsle, L. H., **1964**, *J. Inorg. Nucl. Chem.*, *26*, 1329.
 Amphlett, C. B., Inorganic Ion Exchangers Elsevier, **1964**, Amsterdam.
- 11. Malik, W. U., Srivastava, S. K., Bhandari, V. M., Kumar, S. 1976, J. Inorg. Nucl. Chem., 38, 342.
- 12. Tewari, B. B. 2005, Rev. Soc. Quim, Peru, 71, 273.
- 13. Tewari, B. B., Kamaluddin, Proceedings of 83rd Sessions of the Indian Science Congress, 1996, Patiala, India, , p. 34

Accepted 04 06 2016

- 14. Kourim, V., Rais, J., Million, B. 1964, J. Inorg. Nucl. Chem., 27, 1111.
- 15. Prout, W. E., Russell, E. R., Group, H. J. 1965, J. Inorg, Nucl. Chem., 27, 443.
- Vogel A.I., Vogel,^s Text Book of Quantitative Inorganic Analysis, Including Instrumental Analysis, John Wiley & Sons, 4th ed., 1978, New York, p. 827
- 17. Nakamoto, K., Infrared Spectra of Inorganic and Coordinate Compounds, John Wiley, 1963, New York, p. 166.
- 18. Ratnasamy, P., Leonard, A. J. 1976, J. Phys. Chem., 76, 1838.
- 19. Nakamoto, K., Fujita, J., Murata, H. 1958, J. Am. Chem. Soc., 80, 4817.